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Abstract

Between entry into the upper atmosphere and interaction with the lower atmosphere to produce

a charged particle shower, heavy Cosmic Ray elements such as Iron will emit Cherenkov Light.

This Direct Cherenkov (DC) Light forms a characteristic circular light distribution on the

Earth’s surface with an intensity proportional to the square of the cosmic ray charge. While

the air showers will cover much of a telescope image, this DC light is usually concentrated in a

single DC pixel. A new method of identifying these DC pixels was developed using a Boosted

Decision Tree (BDT), leading to an eightfold increase in acceptance rate and a decrease in

misidentification. A second new method was developed to reconstruct this charge number, by

fitting the received Cherenkov Photons to the characteristic Lateral Photon Distribution (LPD).

The reconstruction requires at least four DC pixels to be found simultaneously, with the new

BDT identification method leading to a two-hundred-fold increase in such events being found.

A likelihood minimisation enabled successful reconstruction of the Charge Z of such events. A

charge resolution of σZ ≈ 1 was observed, compared to a resolution of σZ ≈ 5 that existing

techniques are capable of.

Zusammenfassung

Nach dem Eintritt in den oberen Atmosphäre und vor die Interaktion mit den unteren At-

mosphäre, die eine Teilchenkaskade produziert, emmitiert schwere Kosmischiche Strahlung wie

Eisern das Cherenkov-Licht. Dieses Direkt Cherenkov (DC) Licht produziert eine charakter-

istische kreisformige lichtkurze auf die Erdefläche, die eine Intensität proportional zur Kern-

ladungszahl zum Quadrat hat. Obwohl die Teilchenkaskade die Meisten des Telescopbilds be-

setzt, dieses Cherenkov-Licht wird normalerweise in einem einzelen Bildpunkt konzentriert. Ein

neues Verfahren, das diesen DC-Bildpunkten mit einem Boosted Decision Tree (BDT) iden-

tifiziert, ist entwickelt. Es hat nicht nur zu einen achtmaligen Zunehmung der Akzeptierten-

quote, sondern auch zu eine Verbessung der Misidentifikationsquote geführt. Noch ein neues

Verfahren, das die Ladungszahl durch einem Fit des Cherenkov-Lichts zum characteristische

LPD rekonstruktiert, ist entwickelt. Solche Rekonstruktion braucht gleichzeitig mindestens 4

DC-Bildpunkten, die das neues BDT-Verfahren zeihundertmal so oft finden kann. Dadurch ist

eine Währscheinlichkeitsminimierung möglich, die zum Rekonstruktion der Laudungszahl führt.

Letztendlich beobachten wir eine Ladungszahlauflösung von σZ ≈ 1, die vergleichbar mit den

heutigen Auflösung von σZ ≈ 5 ist.
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1 Preface

This analysis was conducted in the Astroteilchenphysik group of Universität Hamburg between

October 2015 and July 1016. It was supervised by Professor Dieter Horns who, in addition to

invaluable guidance and never-ending patience, proposed both the original aim of the project

and the concept of LPD reconstruction. It was further supported by Attila Abramowski, whose

overlapping field of research provided invaluable opportunities for discussion and comparison.

The basis of this thesis work can be divided into two halves. The first half is the simulation

of Cosmic Ray HESS camera images, and analysis work based on these images. The second

half is a Monte Carlo study simulating air shower intensities, based entirely on function fitted

from the HESS camera images. It is important to note that the simulation of Cosmic Ray air

showers for the first part of my thesis was performed using the CORSIKA software [1], and the

resultant HESS camera images were produced using the Sim Telarray software [2]. I claim no

credit for the complex simulations that these packages have enabled me to perform.

Additionally, a significant portion of this work relies on Supervised machine learning that

was performed using the SciKit learn package [3]. Although I wrote the relevant Python scripts

to facilitate data categorisation and algorithm training, the package acts as a black box to

convert training data into a functioning Boosted Decision Tree. I would like to make clear that

I am indebted to those who produced this package, without whom this analysis could not have

been performed.

Furthermore, a part of this analysis was based on comparison with existing methods for

reconstructing Cosmic Ray Charge Number that were performed by the HESS collaboration

[6]. Their groundwork based on the first phase of the HESS array was both a guide and a

standard for my efforts at reconstruction.

Aside from this, all other work described here is my own. In particular, I wrote scripts to

read the Sim Telarray output, convert raw voltages to calibrated pixels Intensities, and to plot

the HESS camera images such as that found in Figure 4. Furthermore, I wrote all necessary

code for the Monte Carlo simulation, and it was conducted solely for this analysis.
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2 Introduction

Cosmic Rays are abundant in our solar system, entering the Earth’s upper atmosphere from

every direction. Cosmic Rays are in fact not rays but rather charged particles, primarily pro-

tons, which have been accelerated by various galactic or stellar processes. Their flux is governed

by a well-defined energy power law, which is almost unchanged across more than 10 orders of

magnitude [4]. The exact Cosmic Ray composition is energy dependent, and provides infor-

mation regarding their sources. Heavy Cosmic Rays, the most common of which is Iron, vary

substantially in relative abundance for different energy scales.

Being highly-energetic charged particles, Cosmic Rays will often travel through the atmo-

sphere faster than the local speed of light. Consequently, many will emit substantial Cherenkov

light, and this light will often be visible on the ground. There are numerous Telescope Ar-

rays which image the Cherenkov Light emitted by Cosmic Rays in the atmosphere, including

the HESS, MAGIC and VERITAS Experiments. Although the number of emitted photons is

comparatively small, the Cherenkov light is still distinguishable from the night sky background

because the telescopes are able to capture images with an exceptionally short recording time.

The Cherenkov photons all arrive almost simultaneously, so have a high intensity during the

short time window when the image is formed. For the HESS array, this window is equal to 80ns

[5].

All such telescope arrays currently rely on Hillas Analysis to fully reconstruct the events,

including the charge Z of the Cosmic Ray. Hillas Analysis relies on extracted parameters from

each of the camera images, but heavy atmospheric blurring of these images means that charge

resolution is very poor. For Iron Nucleus events, we would expect to reconstruct

Z ≈ 26± 5

with a core position resolution of roughly d ≈ 20m [6]. The Cosmic Rays imaged by these

telescopes have energies in TeV scale, and at present, no study of the relative abundance of

different cosmic ray elemental abundances exists at these energies. If the telescope arrays

could be used to spectroscopically analyse the Cosmic Rays, it could provide important clues

regarding the mechanism of Cosmic Ray formation and propagation in the galaxy. However,

current charge resolution from Hillas Analysis is not small enough to undertake such a study.

The principal goal of this thesis is to enable spectroscopic analysis with Cherenkov Telescope

arrays, by improving the charge resolution of reconstructed events.

A theoretical study by Kieda in 2001 [7] suggested that, with a core position resolution of

d ≈ 5 m, we could expect to see a charge resolution of σZ ≈ 1 for elements of Z = 20 or

higher. In this case the core position resolution would be the limiting value. Thus, if the LPD

method can achieve this core position resolution, the precision will be sufficient to extract the

abundances of the different Cosmic Ray Elements.

Instead of Hillas Analysis, we will consider a new method for event reconstruction, in which

we fit the known Direct Cherenkov (DC) Light observed by each telescope to a characteristic

Lateral Photon Distribution (LPD) function. This new technique is valid both for currently

running experiments, as well as planned experiments such as the Cherenkov Telescope Array
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Figure 1: A diagram illustrating the HESS array [6]. The four small telescopes are shown, but
not the larger central telescope. The smaller Cherenkov ring is seen alongside the broader EAS
light. A simplified camera image is also shown, and can be compared to a full image seen in
Figure 5.

(CTA). It uses only the information from the DC Pixel identified in the shower images. Possible

improvement in core resolution is the prime motivation for the new LPD technique.

To fully reconstruct an event, we will need to find the charge, energy and the core position

coordinates. In addition, we will need to determine the height of the first atmospheric interac-

tion. We would normally require at least five data points in order to reconstruct these variables.

However, it is possible to use the non-observation of light in one telescope to constrain the core

position. Thus, we will seek events seen by at least four telescopes for a five-telescope array

such as HESS. An illustration of the HESS array is shown in Figure 1.

3 DC Pixel Identification

In a Comsic Ray event, the ‘Primary Particle’ will emit Direct Cherenkov (DC) light in the

upper atmosphere, before generating an Extended Air Shower (EAS) through interaction with

the lower atmosphere. The primary particle is the Cosmic Ray itself, while the EAS refers

to all daughter particle of the primary particle. In telescope images, the DC light is usually

concentrated in a single ‘DC pixel’. Identifying this pixel is challenging, because the brighter

EAS Cherenkov light background often overlaps with the DC pixel. In order to apply the LPD

method to data, we must first identify the DC pixel in a shower image, and determine the

number of DC photoelectrons present.

3.1 Theoretical LPD

To understand why DC light has a characteristic distribution, it is important to recall that

Cherenkov emission begins when a charged particle passes the local speed of light in a medium.
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We know that the refractive index of air is proportional to the density of air. Thus, the minimum

velocity needed for Cherenkov Emission is lower for low atmospheric altitudes, because the air

is denser. If the velocity is sufficient, we will observe photon emission from the particle at the

Cherenkov Angle θc. We obviously require that the Cherenkov Angle is real, so then require

cos(θc) ≤ 1. The minimum required velocity βmin is thus equal to the inverse of the local

refractive index η.

cos(θc) =
1

ηβ
=⇒ β ≥ 1

η

The velocity of a particle is a function of its energy, determined with the relations γ = E
m0c2

and β2 = 1 − 1
γ2

. Thus, we find that the minimum velocity ultimately leads to an Energy per

unit mass threshold. If we assume that the slight difference in proton and neutron mass is

negligible here, than any atmospheric altitude will have a local Energy per Nucleon threshold,

and this threshold will be the same for all Cosmic Rays.

The Energy per Nucleon Threshold for Cherenkov Light Emission as a function of height is

illustrated in Figure 2. Once the Energy of a Cosmic Ray exceeds the local Cherenkov Energy

Threshold of the atmosphere, the Nucleus will begin emitting a ring of Cherenkov Light. Then,

for a given Telescope Array altitude above sea level and a given height h, simple trigonometry

yields the final radius of emission on the ground:

Radius(h) = tan(θC(h))× (h− altitudearray)

The refractive index as a function of height is shown in as seen in Figure 3, using standard

values listed in the appendix. Because the refractive index of air increases very quickly as the

height decreases, the Cherenkov Angle θC will also increase rapidly with decreasing height.

Thus, although the displacement (h − altitudearray) decreases with height, the radius on the

ground will nonetheless increase as height decreases. Consequently the upper atmosphere emis-

sion contributes to the inner LPD, while the lower atmosphere emission contributes to the outer

LPD. As the cosmic ray travels down through the atmosphere, Cherenkov Emission continu-

ously illuminates new areas on the ground that were previously unlit, without re-illuminating

inner regions.

Emission continues until the first interaction with the atmosphere, occurring at a randomly

distributed height we call hint. The maximum radius of the DC light will then be rmax =

Radius(hint). This is extremely useful, because for all distances up to rmax, the LPD will be

completely independent of the interaction height. One full parameterisation of the LPD will

thus be valid for all heights, provided the maximum radius is known.

Above threshold, Cherenkov Emission is determined by the Frank Tamm formula [8]. Under

the assumption of constant magnetic permittivity and a zenith angle of 90◦, and with the

vertical distance travelled in meters ∆h and the emission energy range in eV ∆E , we can find

an approximate Cherenkov Emission formula.

d2Nphotons

dEdh
=
αZ2

~c
sin2 θc(E) ≈ 370Z2 sin2 θc(E) cm−1eV −1
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Nphotons ≈ (37000× Z2 ×∆h ×∆E(E))m−1eV −1

A full simulation of the LPD was undertaken, with the assumption that ∆E ≈ 0.7eV

independent of Energy. Although this is certainly an oversimplification of the true picture,

it will allow us to understand the variation of the LPD with height. A more rigorous LPD

parameterisation will be found later to account for the dependence of ∆E on the Energy.

If we divide the number of emitted photons by the area of the annulus between the ring radii

at h and h −∆h, we retrieve the LPD shown in Figure 3, which varies with ρDC = f(r) × Z2

. Thus the amplitude of the LPD is proportional to the square of the Cosmic Ray charge,

enabling us to reconstruct this number from the DC emission. This proportionality is the basis

for charge reconstruction in the LPD method.

The refractive index at a series of heights, based on data from the HESS site, is shown 3.

Exponentials are fitted between points to provide interpolation, and a comparison can be made

to a linear interpolation that is also plotted. Despite the exponential interpolation, discontinu-

ities in the second derivative of the refractive index prevent the LPD from being smooth in the

simulation. This is unimportant, because in reality the variation due to atmospheric conditions

and random noise will smear out any discontinuities in the LPD.

We can also see ground emission radius as a function of height in Figure 2. We find that the

high-radius emission (occurring near the first interaction region) varies little between different

high energies. We deem this to be ‘Saturated Emission’. To accurately quantify Saturated

Emission, we can compare the photon density to the theoretical maximum photon density,

corresponding to an infinite-energy particle with β = 1 in Figure 3. The illustrated maximum

is useful as a reference, although because the atmosphere is not modelled beyond an altitude

of 120km, the small-radius emission is not accurately simulated entirely correctly. However,

real cosmic rays in the considered energy regime will all cross the emission threshold and begin

emission at an altitude much lower than 120km, so can be considered accurately modelled.

For energies above 25 TeV, we see that there is a clear characteristic photon distribution

which is almost independent of Energy except for a varying endpoint. The LPD displays many

discontinuities, which can be explained by the interpolation of Refractive Index. Exponential

Interpolation will not provide a function that is smooth for second or third derivatives, and

consequently, the LPD is not smooth. In reality, there will be a funtion describing the Refractive

Index as a function of height, but it will depend on many variables such as Temperature. This

will be the dominant cause of variations to the LPD, and thus, uncertainty in the LPD from

Refractive Index Interpolation will be sub-dominant.

In any case, we will not be able to directly measure this LPD. Instead, a telescope images

containing air showers must be analysed, and from these images, we can infer the quantity

of DC light present amongst a large degree of background. Extensive simulations of Camera

images will be performed, in order to quantify the resultant LPD extracted from the telescope

images. After determining a likely experimental LPD, Monte Carlo events can be simulated,

and then reconstructed.
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Figure 2: The Threshold Energy for Cherenkov Emission is marked in blue. With the as-
sumption of β = 1, the maximum emission radius is marked in black. The red and green and
magenta line show the emission radius at 3.57 and 0.75 and 0.23 TeV per Nucleon respectively.
The Green 0.7 TeV line is sufficiently close to the background to be saturated at 24km, while
the magenta line is not.
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Figure 3: Above, the refractive index is shown with both linear and exponential interpolation
between the known values. The LPD obtained from simulation of an Iron Nucleus up to a
first interaction height of 20km for a range of Core Energies. An altitude of 1.8km for the
experimental array is assumed. Atmospheric absorption, although neglected, is broadly constant
across the emission range leading to uniform amplitude scaling.
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3.2 Image Simulation

The CORSIKA package [1] was used to generate Cosmic Ray events, and the Sim telarray

package [2] was used to generate corresponding HESS array telescope images. Simulation with

EAS background was used to produce training pixel sets, while corresponding simulation without

EAS background was used to find the true DC pixel in each training image.

The full simulation of air showers was performed using CORSIKA with a standard atmo-

spheric profile derived from measurements conducted at the HESS site in Namibia. This is

included in the Appendix. In total, 5000 training events and a further 10000 testing events

were simulated. The simulated particles were Fe56, within the Energy Range of 35− 135 TeV

and a flux spectrum φ(E) ∝ E−2.7. For each set of simulated event, 4 unique random number

seeds were used to generate the shower. An altitude of 1800m was assumed, again corresponding

to the HESS site. The simulated zenith angle ranged from 0◦ < θ < 2◦, while the simulated

azimuth angle ranges from −2◦ < φ < 2◦. The four smaller HESS-phase-1 telescopes were

arranged in a cross along the x/y axis with the larger HESS-phase-2 ‘CT5’ telescope placed at

the center. The length of each cross arm was 85m. The simulated target region of the cores was

chosen to be a square centered on CT5, with each 300m-long side bisecting the x/y axis. Due

to hardware differences between CT5 and the original HESS 1 telescopes, we analyse HESS1

and HESS2 images separately.

To determine the true class of each pixel, a simulation was initially run with an energy cut

of 10 PeV on all muons and electrons. Because this cut exceeded the primary particle energy,

neither daughter muons and electrons, nor the photons they would have emitted, were simulated.

Thus the hadronic Cherenkov Light from the primary particle and daughter fragments, but not

the EAS light, was present in the camera image. A second identical ‘EAS Simulation’ was run

including the same random seeds, but without the energy cut on muons and electrons. This

gave a complete EAS image including identical DC light. The difference is well-illustrated in

Figures 4 and 5.

With the sim telarray package, the expected HESS hardware response to each air shower was

simulated. Among other things, the program accounts for atmospheric transmission and density,

mirror positions, sizes and reflectivities, camera shadowing and triggering, quantum efficiency

and pulse responses. For the full-shower image, the night sky background was also simulated by

sim telarray. Due to the comprehensive and detailed nature of these hardware simulations, the

resultant images can be considered ‘realistic’. However, sim telarray introduces various sources

of random noise to the simulation, leading to some divergence in the DC light between the

EAS-free and full-shower images.

The various pixel entry variables were found from the sim telarray output. The HESS

telescope pixels have a high gain Channel 0 and a low gain Channel 1, with both voltages

undergoing a Flash Analogue-to-Digital Conversion (FADC). The simulated value of the FADC

Voltage for each channel was found. Using the pedestal and gain, the quantity Intensity =

(FADC −Pedestal)×Gain was calculated for each channel. Due to possible saturation of the

high gain FADC, only the low gain Intensity was used. Sim telarray also derives various Hillas

whole-image parameters. These include the image width and length measured in degrees, from

which the aspect ratio A.R = width
length was calculated. The reconstructed shower direction and the
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Figure 4: An ideal camera image without
the EAS shower. The DC light is visible
in every telescope, indicated by the white
arrow. The DC pixel is circled in white.
The largest telescope image is from CT5,
and is analysed separately.

Figure 5: This is a typical camera image.
The same shower as in Figure 4 is shown
here with the inclusion of the EAS shower.
The DC light is pixels indicated with a
white arrow and circle. The shower center
of gravity is marked by a white cross.
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shower center of gravity were also calculated, as positions in azimuth and zenith. Additionally

the estimated energy and distance from each telescope to core, rcore, were found.

For every pixel, in addition to the Intensity, its location within the telescope image was

determined using the standard HESS layout. The variables ∆C.o.G, ∆Direction and ∆Line were

defined as the distance from the pixel to the shower center of gravity, shower direction, and the

line joining those two points. Furthermore, the nearest neigbouring pixel IDs were calculated

for every pixel position, enabling the Intensity in each neighbouring pixel to be found. The

largest neighbouring intensity was identified, and the ratio QDC = IntensityN.N.max
Intensity was derived.

Similarly the largest neighbouring FADC was found, and the ratio rawQ = FADCN.N.max
FADC was

calculated. In addition, the Nearest Neighbour Mean Intensity MeanN.N was recorded, as

well as the smallest neighbouring pixel intensity IntensityN.N.min. The variable DCSignal =

Intensity−MeanN.N was defined as an rough guess of the ‘DC signal’ component in the pixel.

Lastly the Image Amplitude Itot, defined as the total image intensity after the default tail cuts

have been applied to the image.

3.3 Classic HESS1 DC Pixel Identification

We can find the DC pixel in an image with the variable QDC . In previous experiments, the

DC pixel candidate was identified by applying a number of cuts to pixels in an image [6], and

from the subset of pixels passing the specified cuts, selecting the pixel with the smallest QDC

as the ‘DC candidate’. Due to the low pass rate for cuts, we obtain a small low-contamination

dataset, while the majority of telescope images are left without a DC pixel candidate.

As a basis for comparison, these original HESS cuts listed in Table 1 were replicated for the

set of test data. For every HESS1 image, the total image amplitude Itot was used alongside

the zenith angle θ to determine a dynamic cut, QDC < 0.14 × log( Itot
161×cos θ ). Because many

images had no pixel that passed all cuts, the QDC method was frequently unable to identify

a DC pixel. In the original analysis, an additional cut rcore>40m was applied. However, the

uncertainty in determining the core position through Hillas Analysis is typically of the order

of ±20m. Consequently, this particular cut was omitted, though it would only serve to further

reduce the DC pixel acceptance rate.

Table 1: Cuts applied to image pixel sets, used by HESS collaboration [6]

Variable Cut

∆C.o.G >0.17
∆C.o.G <0.91

∆Direction <0.45
∆Line <0.23

Aspect Ratio <0.75

QDC <0.14× log( Itot
161×cos θ )

The candidates were checked against the true DC pixels identified in the EAS-free images.

From the testing sample, 1.81% of all HESS1 images were correctly identified and passed the

cuts. Once misidentified events were considered, the post-cuts sample was 77.8% accurate,

as shown in Figure 6. These values will serve as a useful benchmark for BDT performance.
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Increasing the acceptance rate will be essential for enabling spectroscopic analysis of cosmic rays,

by providing more events to analyse. An improved method would aim to increase the number of

correctly identified DC pixels, while still enabling cuts which discriminate well between correctly

and incorrectly identified DC pixels.

3.4 Boosted Decision Tree DC Identification

Classifiers provide an alternative method of DC pixel identification, making use of supervised

machine learning to find rules for categorising pixels. To train a classifier, we require a set of

training pixels, as well as the correct class for each pixel. Once trained, a classifier can then

be used to predict the class of a pixel. As part of a new method developed for this analysis, a

Boosted Decision Tree (BDT) classifier was trained to identify DC pixels using the Scikit Learn

Python package [3].

A Decision Tree is a simple method of classification, in which a number of branching decisions

are used to place events into one of many ‘leaves’. A leaf lies at the end of every decision chain,

and will be associated with one of the possible classes. Any event being assigned to a particular

leaf will then be classified as belonging to that leaf’s class. Each branch and leaf has a sample,

which indicates the number of training events that are placed in there. As part of the machine

learning process, branches are constructed to maximise leaf purity. A hypothetical perfect

branch would split a mixed sample into two pure leaves.

It will almost always be possible to construct a tree, such that each event was placed in its

own, unique leaf. The performance of a tree would be perfect for the training set. However, if

applied to a separate testing sample, the performance would be significantly worse. The tree

would not be classifying data, but rather simply remembering the structure of the training data.

We describe such a tree as being overtrained.

In general, larger training sets prevent overtraining by making it more difficult to uniquely

distinguish the individual events. The maximum depth of a tree is the number of branches a

decision chain can pass through before it must end on a leaf. The minimum leaf sample is the

minimum number that every leaf sample must exceed. Either of these quantities can also be

used to restrict overtraining of a Decision Tree.

A graphical representation of a Decision Tree is given in Figure 7. Decision Tree training is

highly unpredictable, meaning similar datasets can produce wildly differing trees. Thus Boosted

Decision Trees are used to provide a more stable method of classification. The training of a

Boosted Decision Tree is in some sense an averaging process, where many different Decision

Trees are trained. One starting Decision Tree is produced, with each event having an equal

weighting. After each iteration of tree production, any misidentified events in a tree are given

a higher weighting for the training of the next tree [9]. Over time, this leads to an improved

learning process by focussing more on those events that are more difficult to classify.

In this case, the training set consisted of pixels from 5000 CORSIKA events. It was randomly

split further, with 90% in a learning subset and 10% in a subset to check for overtraining. Within

the learning subset, every HESS 1 image was used, provided it was triggered in both EAS-free

and full-shower simulations. For each of the triggered image pixels, an entry was formed with

the variables listed in table 2. A class of 0 was assigned to every non-DC pixel, and a class of
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Figure 6: The DC signal in the shower-free pixel is shown in the top left, with a broad gaussian
distribution with the tail of the night-sky background extending up to appproximately 5000.
Events below this are unlikely to be identified correctly because the DEC light is too faint. In
the top right- the distribution of the dataset is shown, once all the non-QDC cuts have been
applied. In the bottom left, the BDT score distribution is shown before any cuts. On the
bottom right, we see the same distribution after both signal and BDT score cuts are applied.
All green events are ones in which the DC pixel has been correctly identified, while red events
are ones that have been incorrectly identified.
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Figure 7: An example of a decision tree for the HESS 1 telescope system. The left direction is
followed if the branch condition is true, while the right direction is followed if the condition is
false. Red leaves contain non-DC pixels, while blue leaves represent DC pixels. The sample of
each leaf is listed. Darker boxes have purer samples, while lighter boxes are more mixed.
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1 was assigned to every DC pixel. Having created a dataset, the BDT was then trained with

a maximum depth of 8, and with 1000 trees generated. The data was provided in the form of

individual pixel entries, rather than as discrete sets for images or events.

Table 2: Relative Feature Importance in HESS-1 BDT training

Variable Relative Importance

DCSignal 0.33
MeanN.N 0.24
QDC 0.14

∆Direction 0.12
Image Amplitude 0.07

rawQ 0.05
∆Line 0.02

Intensity 0.02

The relative importance of each ‘feature’ is automatically calculated by the Scikit Learn

package, and is also recorded in table 2. The variable DCSignal was consistently the most

importance variable across many combinations of included variables and BDT training param-

eters. It was found that, under the conditions listed above, the BDT was 99.94 % accurate for

the learning pixel subset, and 99.94 % accurate for the overtraining-check pixel subset. This

indicates that the BDT was not significantly overtrained, which would otherwise be manifested

by a large divergence in accuracy between learning and overtraining-check data.

Having trained the BDT successfully, it was then applied to the same test dataset as for

the classic QDC identification. In each camera image, the event with the largest BDT score

was deemed to be ‘most signal-like’, and thus selected as the DC pixel candidate. A cut was

applied, requiring Psignal > 0.5 for the DC candidate to be accepted. A second cut requiring

DCSignal > 150 removed many incorrectly identified events. Application of this combined

cut greatly increases the successful identification rate. From the testing sample, 16.01% of all

images were correctly identified and passed the cuts. The BDT was found to be 79.2% accurate

in identifying DC pixels which passed the cuts. This represents a very significant improvement

in pixel identification efficiency, as well as a minor increase in accuracy after cuts.

The results are summarised in Table 3. The BDT method represents a clear improvement in

DC pixel identification over the previous QDC method, and corresponds to an eightfold increase

in identified pixels.

Table 3: Comparison of QDC and HESS 1 BDT Performance

QDC BDT

Accepted Pixels Correctly Identified (%) 1.81 16.01
Accepted Pixels Incorrectly Identified (%) 0.52 4.22

Sample Purity (%) 77.8 79.2
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3.5 HESS-2 BDT

The original HESS study predated the construction of the larger CT5 telescope, and thus focused

exclusively in the four HESS-1 telescopes. Although the cuts in Table 1 were not optimised

for the differing pixel size and angular viewing region of CT5, they were replicated to provide

a basis for comparison. Based on CT5 images from the training sample, an increased 5.6% of

DC pixels were correctly identified and passed the required cut. A further 14.8 % of all pixels

passed the cuts, despite being misidentified. This represented a very heavy decrease in sample

purity to just 27.5%. We can assume that better optimised CT5 cuts could remove many of

these misidentified events, though it is unlikely that any significant improvement in the number

of correctly identified DC pixels would be possible. Thus, the number of DC pixels successfully

identified using the QDC method is still a valid benchmark for comparative BDT performance.

A true accuracy rate closer to the HESS 1 rate of 80% could be expected, at the expense of

a depressed acceptance rate. Due to the distinctiveness of the CT5 telescope hardware, direct

application of the HESS1 classifier to the CT5 telescope yields poorer BDT performance. To

improve CT5 pixel identification, a separate HESS2 BDT was instead trained with the same

variables as above. The relative feature importance is listed in Table 4.

Table 4: Relative Feature Importance in HESS-2 Classifier BDT training

Variable Relative Importance

DCCount 0.32
MeanN.N 0.24
rawQ 0.09
QDC 0.08

∆Direction 0.8
Image Amplitude 0.07

Intensity 0.06
∆Line 0.04

For the training events, the classifier was 99.97% accurate, while for the overtraining check

data, it was 99.96% accurate. The classifier was thus not significantly overtrained. Applying

the new classifier lede to an improvement in CT5 classification, with 18.52 % of pixels being

correctly identified and accepted, and an accuracy of 80.6%. With this improvement, there is a

no significant gap between the between the performance of HESS1 classifier on old telescopes,

and the performance of the HESS2 classifier on CT5.

Table 5: Comparison of QDC and HESS 2 BDT Performance

QDC BDT

Accepted Pixels Correctly Identified (%) 5.59 18.52
Accepted Pixels Incorrectly Identified (%) 14.75 4.44

Sample Purity (%) 27.5 80.6
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3.6 High Multiplicity Events

For LPD event reconstruction, we require at least four measurements of the DC light. We define

the telescope multiplicity of an event as the number of DC pixels which are identified and pass

all cuts. Telescope multiplicity measures both HESS1 and HESS2 pixels. A ‘high-multiplicity

event’ is one in which we have telescope multiplicity > 3. If we only consider high-multiplicity-

QDC events, we can determine how frequently the QDC method provides events suitable for

LPD reconstruction. After applying the multiplicity cut, there were was just one single high-

multiplicity event found using the QDC method out of the 10000 testing events. This meant that

just 0.01% of all pixels were accepted, albeit with a sample purity of 100%. Because the final

sample consisted of just three HESS1 pixels, and one HESS2 pixel, the associated Poissonian

error in acceptance rates and accuracy rates will be extremely large.

Through application of the two HESS classifiers, we can find the comparative high-multiplicity-

BDT performance. If we only consider high-multiplicity-BDT events, the fraction of correctly

identified HESS 1 DC pixels falls to 2.20%, while the fraction of incorrectly identified pixels

passing the cuts falls to 0.43%. The sample purity increases slightly to 83.8%. In total 1.61% of

the HESS 2 pixels are correctly identified and accepted, although the accuracy rate is increased

to 88.0%. The relatively high fraction of passing events is in excess of the random expectation

of 0.164 = 0.07% and 0.194 = 0.13% for HESS1 and HESS2. This suggests that DC pixel

identification between different telescope images is strongly correlated. The same is true for the

QDC high multiplicity rates.

The minor discrepancy in performance between HESS1 and HESS2 can partially be ex-

plained by the geometry of the HESS array. Any event with a core position near the central

CT5 telescope is likely to trigger the four outer telescopes. However, the dim inner LPD is

unlikely to be seen in the big central telescope. In the event of a core position near one of the

corner telescopes, CT5 and at least three of the other telescopes are likely to have a clear DC

signal. Thus the effective area for high multiplicity events including CT5 is smaller than for

those involving the HESS1 telescopes.

Despite the minor performance difference, the BDT method is clearly superior in both cases.

On top the gains in BDT accuracy when considering only high-multiplicity events, we also find

the relative performance gap over the QDC method is vastly increased. As a result of the

two-hundred-fold increase in acceptance rate for high-multiplicity-BDT events against high-

multiplicity-QDC events, the expected data sample size will increase dramatically. This should

enable spectroscopic analysis of Cosmic Ray elements to be conducted after a much shorter

experimental run time that for the QDC method. Use of the BDT identification method will

be assumed throughout the rest of this paper, and a high-multiplicity event will be intended to

mean a high-multiplicity-BDT event.

3.7 Proton Background

It is important to discriminate between the heavy Cosmic Ray elements, such as Iron, and

the much more abundant proton events. Protons tend to emit negligible DC light, so will

contaminate any data sample with events that cannot be reconstructed using the LPD method.

To determine the acceptance rate for proton events, a simulation was conducted with 5000
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Table 6: Comparison of high-multiplicity performance

HESS 1 HESS 2
QDC BDT QDC BDT

High Multiplicity Accepted Pixels Correctly Identified (%) 0.01 2.20 0.01 1.61
High Multiplicity Accepted Pixels Incorrectly Identified (%) 0.00 0.43 0.01 0.22

Sample Purity (%) 100.0 83.8 100.0 88.0

proton events in CORSIKA with the same parameters as the Iron train/test data. For HESS1,

the raw acceptance rate was 15.1% while the sample purity of 32.2%. For HESS2, the raw

acceptance rate was 58.6% while the sample purity of 6.8%. Although the HESS1 acceptance

rate is relatively small, the proton flux is approximately ten times greater than iron flux. A

mixed sample would have many more proton images than iron images. Once multiplicity cuts

are applied, the acceptance rate falls steeply to just 2.9%. With the factor 10 discrepancy in flux,

the number of proton and iron images would be comparable. Of those passing the cuts, 24.5%

are correctly identified. For HESS2, the comparable number is 21.7% with multiplicity cuts.

The sample purities are just 24.4% and 7.7% respectively. This poor performance motivates

our desire to remove protons from our sample for analysis.

We require an additional cut to remove the majority of these proton events. If we can

eliminate one or two accepted proton images per event, then the remaining proton pixels will

all be rejected by the multiplicity cuts. Hence, loose cuts can sharply reduce the acceptance

rate of protons. In this case, as shown in Figure 8, there is a fair degree of separation between

proton and Iron Aspect Ratio for pixels which pass all cuts. We aim to remove proton pixels but

not iron pixels. Applying a cut requiring Aspect Ratio > 0.40 eliminated all accepted proton

events for HESS1 and HESS2. With 18844 total HESS1 images, just 6195 images were triggered

by DC light. Of all 18844 images, there were none passing all of the required cuts.

Using poissonian statistics, we can place a 95% confidence upper limit on the acceptance

rate. By virtue of passing a multiplicity cut, the number of accepted pixels must be at least

4, or none. It is thus more appropriate to instead consider the total number of events for

calculations of an upper limit. There were 4711 fully triggered events, of which none was a

‘High Multiplicity Event’. We find a value for the mean λ such that the probability of not

observing a high multiplicity event is less than 5%.

P (n|λ) =
e−λλn

n!
=⇒ P (0|λ) =

e−λλ0

0!
= e−λ = 0.05 =⇒ λ = − ln(0.05) = 3.00

Thus, we can conclude that if the mean λ was greater than 3, we would have expected to

observe at least one event with a 95% probability. As we did not observe an event, we conclude

that the mean high multiplicity event rate is less than 3
4711 = 0.06%.

For HESS1 iron events, the total acceptance rate falls slightly from 2.4% to 2.3%, while the

sample purity increases slightly to 84.3%. For HESS2, the total acceptance rate falls slightly

from 2.4% to 2.3 %, while the sample purity also increases slightly to 88.2%. Iron images form

at least 80% of a sample, because most proton images are at least fifty times less likely to be

accepted. These results are summarised in Table 7.
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Figure 8: The aspect ratio of images in events which pass the multiplicity cut are shown. It
is clear that the proton events have a strong tendency towards lower Aspect Ratios. We must
remove the white proton pixels passing all other cuts, without removing dark green iron pixels
passing all other cuts. A cut requiring Aspect Ratio > 0.40 should remove a large proportion
of proton images without reducing the pass rate for iron nucleii.
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Table 7: Comparison of Proton and Iron Acceptance

HESS1 HESS2

Accepted Proton Pixels (%) 15.10 32.68
Sample Purity (%) 10.1 5.1

High Multiplicity Accepted Proton Pixels (%) 0.83 1.03
Sample Purity (%) 6.8 4.3

Accepted Proton Pixels after All Cuts(%) < 0.06 < 0.06
Sample Purity (%) / /

Accepted Iron Pixels after All Cuts(%) 2.44 1.66
Sample Purity (%) 84.3 88.2

3.8 Low-Energy Emission

In the theoretical simulation of the LPD, we noted that the distribution in Figure 3 is only

saturated in the region of around 35 TeV. Below this, the LPD is more heavily dependent on

Energy, and thus our basic assumption of a characteristic equation will no longer be valid.

However, we also know that any data sample will be dominated by lower-energy events as a

result of the power law φ(E) ∝ E−2.7. To account for this, an additional simulation of 15000 Iron

events was conducted in the energy range 5-135TeV to give a realistic model for performance.

The BDT remained the same, and the same initial cuts were replicated as before. The same

was also done for Protons in the same energy range.

We find that, for Iron Events, the acceptance rate falls by a factor of approximately 15. The

relative proportion of HESS 1 to HESS 2 acceptance is broadly maintained at a factor of roughly

1.5, although the sample purity falls somewhat. If we account for the differing intergrated flux

rate, we can calculate the ratio of expected high-multiplicity event rate ΓHM (E) for the ranges

5-135 TeV and 35-135 TeV.

ΓHM (5− 135)

ΓHM (35− 135)
=

5−1.7 − 135−1.7

35−1.7 − 135−1.7
= 30.3

Thus, if we have thirtyfold increase in event rate, but only one-fifteenth of the original

acceptance rate, we would ultimately expect that we would have twice as many Iron Events if

the full energy range of 5-135 TeV was included. However, the low-energy proton acceptance is

much higher than before at 0.21%. Thus, were we to include all events in this energy range, we

would again retrieve a sample dominated by protons. The results are summarised in Table 8.

Table 8: Comparison of Proton and Iron Acceptance

HESS1 HESS2

Proton Pixels Accepted after All Cuts(%) 0.21 0.19
Sample Purity (%) 1.74 0.00

Iron Pixels Accepted after All Cuts(%) 0.17 0.11
Sample Purity (%) 80.00 80.00
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Fortunately, there is a large degree of separability for Iron and Proton Events based on

their Energy. The energy distribution of the Protons and Iron Events are shown in Figures

9a and 9b. The Iron distribution is slightly unusual, in that it is terminated above roughly

13 TeV, although lower energy events are much more frequent. This can be explained by the

fact that the Cherenkov Emission Threshold is specified by the Energy per Nucleon, and Iron

Nucleii have 56 nucleons. Thus, in almost all cases, Iron Nucleii below this Energy will interact

with the atmosphere before they emit Cherenkov Light. The BDT is unlikely to identify 4 DC

pixels with a sufficient Psignal in an event without any real DC light, and thus no low-Energy

High-Multiplicity Iron events are found.

To remove the proton contamination from protons and non-saturated Iron events, we thus

apply one additional Energy cut on the data sample. The majority of accepted protons have

an Energy of less than 10 TeV, and the largest recorded Energy was 21.6 TeV. We can thus

require that the reconstructed Energy is greater than 35TeV. This will, assuming a rough energy

resolution of around 15% in reconstruction, easily remove all of the proton background. We

will also remove roughly half of the Iron events, but as shown in Figure 3, this low-energy half

of events will mostly contain non-saturated DC emission that would be harder to reconstruct.

4 Parameterisation of the LPD

Having identified DC pixels in a way that is both reliable and consistently removes background

events, we can now consider the resultant LPD. We must parameterise this function before we

are able to reconstruct events. We can also make use of the additional information provided by

the EAS light in each shower image.

4.1 Full-Shower LPD

Having restricted ourselves to high-multiplicity events, we reduce our data sample to mostly

images in which air shower lies relatively close to the center of the telescope field of view. We

can conclude that in many of our images, the air shower should be mostly contained within

the telescope image. In the same way as for DC light, we can firstly look for the existence of

a Characteristic LPD describing the EAS Intensity, which we define as Itot=Image Amplitude.

The results for high-multiplicity events at various energies is shown in Figure 10.

For each energy, a clear exponential decay in Image Amplitude is observed. The data is fitted

with a line of the form yi(x) = Ai exp(Kix). For the purposes of reconstruction, an exponential

decay with a varying exponent and amplitude will not be particularly useful, because there are

two degrees of freedom.

In order to overcome this, we can instead try to parameterise the exponential fits. Across

all energies, a fit is made and the exponent coefficients are recorded. A plot of the Ki exponent

values is then made, as shown in Figure 11. The K coefficients follow a clear linear distribution,

to which a line is fitted. We obtain an equation to determine the exponent of each power law.

Ki = K(Ei) = −0.00004Ei +−0.00692
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Figure 9: The Energy of Proton events passing all cuts is shown above in 9a. It is clear that
the majority come from the low energy regime, and none have an energy greater than 22 TeV
in. The Energy of Iron events passing all cuts is shown below in 9b. The majority come from
the region above 20 TeV.
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Figure 10: The distribution of HESS 1 Image Amplitude is shown for various energies in the
range 36-96 TeV. In each case, the exponential fit is indicated, along with the fractional deviation
band in green.
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Having retrieved a law for K, each dataset is then fitted a second time. The exponent is

determined by the Energy, leaving only one degree of freedom for the fit. The fitted Amplitudes

Ai are then recorded, and are also plotted in Figure 11. A clear relationship is again observed,

this time an exponential law. A straight line is fitted to the logarithm of the data values, and

we retrieve a second relationship describing the amplitude as a function of the Energy.

Ai = A(Ei) = y = 73.9× exp(0.025Ei)

Through combined use of the two equations, we can parameterise the entire Full-Shower

LPD using only the Energy. These fitted LPDs are also plotted in Figure 10. The fractional

deviation from the fit is found for each point by calculating ∆EAS = fitEAS−Itot
fitEAS

. We can

then take the 68% centile values to give us a σ-fraction width, and thus a fractional standard

deviation σEAS
fitEAS

. The fractional standard deviation bands are shown in green, with a mean

value of σEAS
fitEAS

= 0.15 across the energies. We will make an approximation by assuming this

value is a constant, though this is not strictly true. The Full Shower LPDs continue to be

large enough to trigger telescopes for several hundred meters. It is thus likely that, for high-

multiplicity events, we will obtain an additional four or five data points from the Full Shower

LPD.

y(x,E) = 73.9× exp(0.025E − (0.00004E + 0.00692)x)

Although the Full Shower LPDs do not depend upon the charge of the primary particle,

they will still enable the core position and energy to be effectively constrained. We can use the

Full Shower LPD to obtain a rough estimate for the core position, and thus a rough estimate

of the distance from each telescope to the core. Similarly the core energy can be estimated.

Although this reconstruction will be inferior to one accounting for both LPDs, we can make use

of the preliminary core position estimate to aid our calculation of TrueDC . The information

from the full-shower LPD will also be incorporated into our final likelihood minimisation, when

we reconstruct the events.

4.2 Determining TrueDC

Before we can extract the DC LPD from telescope images, we must first decide how to measure

the quantity of DC light, TrueDC . Determining the value of TrueDC is essential for determining

the error in our LPD measurements. However, there are two natural ways of quantifying

TrueDC . In the basic case, we can simply consider the EAS-free intensity Intensitymax in the

DC pixel. An alternative is to take the entire EAS-free image amplitude Itot as our TrueDC

value. The use of Image Amplitude accounts for the fact that the DC light is almost always split

between two or more pixels. Although in most cases, one pixel has the majority of the light, in

extreme cases the light can be evenly split between two. As a result of the smaller angular region

covered by each CT5 pixel, this happens much more frequently for HESS2 than for HESS1. On

the other hand, Image Amplitude measurement is susceptible to edge effects. A DC pixel lying

near the image edge will be unaffected by this fact, but the total image amplitude may decline

because dimmer pixels move over the image edge. We hope that, as with the full-shower LPD
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Figure 11: The fitted exponents Ki are shown above, along with the equation of the Fitted
Exponent Line K(E). Once the fitted exponents are used, the resultant amplitudes Ai are
shown below, along with the fitted Amplitude Line A(E).
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measurements, restricting ourselves to high-multiplicity events will enable us to remove most

images that would otherwise suffer from edge effects.

To quantitatively compare the two methods, we can measure the error associated with

both values of TrueDC . A study of 2000 events was conducted, in which each cosmic ray was

simulation without night sky background or EAS background. Each telescope image simulation

was conducted twice, and difference between I1 and I2 was plotted as in Figure 12. The

fractional difference from the mean Intensity of an image was defined as ∆ = 2× I2−I1
I2+I1

.

For Itot, it was found that the standard deviation in fractional difference was σItot
Itot

= 0.06,

meaning that there is an inherent error of 6 % in measurements of TrueDC . This is reason-

ably low, and can be predominantly explained by the random nature of Photomultiplier Tubes

(PMTs) that are used to measure the Photon Intensity in each pixel. In later calculations of the

error in Intensity, this fractional error can be subtracted in quadrature. The distribution did not

vary between HESS1 and HESS2 telescopes. For the alternative Intensitymax measurement,

the fractional standard deviation was σImax
Imax

= 0.09 for HESS1 and σImax
Imax

= 0.12 for HESS2, a

clear increase. This implies that the Itot measurements are more reliable.

For an alternative measurement of error in the LPD, a simulation of 2000 events was con-

ducted with a fixed energy of 56TeV. The interaction height was allowed to vary realistically.

The true distance to core was recorded from Sim telarray, and a graph was plotted of DC pixel

intensity against core distance. As expected, a characteristic LPD is observed, as seen in Figure

13. Due to the trigger cut on HESS cameras of 20 photoelectrons, we are only able to see the

LPD from around rcore>30m, at which point the LPD intensity crosses the threshold of 20 p.e.

All telescope images lying within the maximum DC radius rmax are marked in black, where the

value of rmax varies with energy and first interaction height. We expect these events to follow

the clear theoretical LPD observed in Figure 3. After the first interaction, further emission be

determined by a highly variable fragmentation process. These events are plotted in red, and

will be ignored for LPD fitting purposes.

A parameterisation of the form y = A exp(bx) +C is fitted to the measurements of TrueDC .

The fractional deviation ∆TrueDC =
signalfit−TrueDCcount

signalfit
can then be found. Using the 68th

centile of all absolute fractional deviations ∆TrueDC , we find that the HESS LPD for Itot has

an error of σItot
Itot

= 0.48. Repeating for Intensitymax calculated values, the resultant LPD had

an error of σImax
Imax

= 0.51. Again, it is clear that Itot has a smaller associated error than Imax.

It is interesting to note that the values of Imax and DCcount are correlated with one another,

more than with Itot. The fractional standard deviation between Imax and DCcount is relatively

small, at 0.34. It is found that the Imax value, and by extension the DCcount value, consistently

underestimates the quantity of DC light in an image. This is not surprising, and indicates the

degree to which DC light is often split between multiple pixels. As this effect is clearly not

negligible, we choose to define TrueDC = Itot for the rest of this analysis.

However, we know that in reality TrueDC will also have an associated error σSTA. This error

originates in the use of internal random numbers for Sim telarray simulations, and means that

a given air shower is not completely reproducible. Having selected a method for determining

TrueDC , we can use the associated value of σSTA = 0.06. In later calculations of the error in

Intensity, this fractional error can be subtracted in quadrature.
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σ2LPD = σ2calculated − σ2STA

Taking account of σSTA
Itot

, we deduce that the true associated error in the LPD is σTrueLPD
TrueDC

=√
(σTrueDC
TrueDC

2 − σSTA
TrueDC

2) = 0.48. Thus, we conclude that the error σSTA is broadly negligible,

and in an ideal case, any LPD measuring pure DC light would always have a minimum error

of 48%. This is extremely large, and suggests that the atmospheric emission height may play

a strong role in absorption of DC light. We had previously assumed that the amplitude of the

LPD might not really be dependent of height.

This suspicion was tested through a second simulation of 56 TeV Iron Events with a

fixed interaction height of 20km. In this case, the recorded fractional standard deviation was
σTrueDC
TrueDC

= 0.14, a very significant improvement. This clearly confirms that there is a significant

degree of LPD dependence of height, and that this far exceeds variations from small changes

in charge number. Whether this will prevent us from using the LPD technique to reconstruct

events depends on whether the measurements we make of the DC light will be independent of

height. It may be possible to account for the varying interaction height.

One way of measuring the emitted DC light would be to use the variable DCCount. The

same fractional standard deviation calculations for varying first interaction height was repeated

with this variable for the BDT candidate pixels in a full shower image, if the pixel had passed

both the DCCount and Psignal cuts. This provides a more reasonable estimate of the expected

LPD error we are likely to be obtained experimentally, and also includes the additional compli-

cation of having incorrectly identified pixels in the dataset. As before, the fractional standard

deviation of each pixel from the fit of the TrueDC LPD was found. Due to consistent under-

estimate of the TrueDC value using the simple DCCount method, the error was much larger,

with σDCcount
DCcount

= 0.43 and the σSTA again being negligible in comparison. Interestingly, this is

a slight improvement over the value of TrueDC . It is likely that this is explained by the atmo-

spheric absorption as a source of measurement uncertainty. Although the quantity of received

DC light will be dependent on atmospheric absorbance, so will the EAS Shower Intensity that

is present in the neighboring pixels. Thus, when subtracting the mean neighbouring Intensity

of the DC pixel, the variation in TrueDC will be somewhat reduced. Despite the minor im-

provement, this representative error is extremely large, and will pose significant problems for

event reconstruction.

4.3 Regression BDT for DCCount

In order to reduce the LPD error, an alternative method of calculating the DC signal was

developed. Supervised machine learning was again used to solve the problem, through training

of a BDT Regressor. As with Classifiers, Regressors are initially trained using individual data

entries. Instead of the true classes for the entries, regressors require the true value of a continuous

variable. Once trained, the Regressor can be used to predict a value of the variable for a given

data entry. In this case, the Regressor is trained to estimate the quantity of DC light TrueDC

for a given pixel. Once a DC pixel has been identified, the Regressor is applied to it. The
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Figure 12: The fractional difference in total Image Intensity between the two simulations is
shown in the graph above. A clear symmetric Gaussian is observed, with a mean of 0.00, and
a standard deviation of 0.06. Below, the two intensities are plotted against one another. The
distribution does not deviate significantly from the ideal 1:1 correspondence illustrated with the
black line.
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Figure 13: The two LPDs shown above are estimates of HESS1 TrueDC calculated via Itot,
as well as for the maximum pixel Intensity. The two full-shower calculated LPDSs are shown
underneath, with the simple guess DCCount, and the regressor calculated DCrgr. An exponential
is fit to the TrueDC distribution, and the 68% fractional deviation is shown in green. The same
curve is shown on the two derived DC values, with the new fractional deviation being much
greater.
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Regressor returns the calculated value of DCrgr, an alternative estimate of the DC signal.

Training of a BDT is significantly impeded by the huge uncertainty in TrueDC . A BDT

regressor is unlikely to be able to improve upon the error in the original training values. To

remove all associated uncertainty, a fitted parameterisation was used based on the LPD for

TrueDC rather than the actual values of TrueDC . The parameterisation, most importantly,

will be independent of first interaction height.

y1(r < rmax) =
Z

26

2

× 5.3× exp(0.013r)

y2(r > rmax) = y1(rmax)× exp(−0.06(r − rmax))

We train the regressor to interpolate the value of y(r) using a number of variables, and most

importantly, we include the True distance to the Core and the true energy among the regressor

variables. These values will be exactly known for the purposes of training, and known with a

roughly 10% uncertainty when an event is reconstructed. The full variable list in given in Table

9.

For convenience, an offset C = −6.5 in y(r) was omitted, yielding a simple exponential

law. Counter-intuitively, it does in fact not matter whether the training values bear any direct

relation to the TrueDC values. The only values that we need for reconstruction are our DCrgr

values, based on the DC candidate pixel and full-shower image. As long as theseDCrgr values are

proportional to Z2, the reconstruction method will remain valid. In theory, any parameterisation

would be valid for the regressor to train with. It is obvious that, if given accurate core distance

values, the regressor will always be able to perfectly replicate the exponential distribution.

However, we cannot give a trained regressor true values of energy or distance to the core, when

the regressor is applied to experimental images. Instead, we must give an approximation of these

values, estimated through analysis of the full shower. Thus, if we were to choose a completely

outlandish parameterisation that did not correlate to the images at all, the only useful variable

would be the true core distance. As we do not exactly know the core distance, we would also

have a large uncertainty in DCrgr. Because no additional information would be present in

the resultant LPD, any reconstruction would not provide reduction in core position or charge

resolution measurement.

If suitably trained, the regressor would consider the core position as a factor, but also

correlate it with other variable related to the image. Then, given an estimate of the core

distance, the regressor is able to produce a value of DCrgr with some small error, that is still

proportional to Z2. To be successful, we require the BDT to make of use of many other variables

in addition to DCcount. If the BDT can do so, it will have a far smaller related uncertainty than

the values of TrueDC by also taking the varying interaction height into account.

The training set of data for the BDT consisted of one true DC pixel entry in each full shower

image. The training sample contains, in equal proportion, elements Manganese (Z=25), Iron

(Z=26) and Cobalt (Z=27). This to ensure that the regressor is well trained to distinguish

between different cosmic ray charges, by providing variation of Z2 for training. If the regressor

is capable of distinguishing between these three elements, then this will serve as a sufficient

proof of concept. We expect that, were an entire spectrum of Cosmic Ray elements simulated,
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a regressor could be trained with similar performance for a large charge range. The training of

such a BDT was not done as part of this analysis, due to computing time restraints. However,

in Monte Carlo simulations, the existence of a regressor will be assumed.

As before, a separate BDT was trained to account for the differences in hardware for the

CT5 camera. The Feature Importances for the HESS1 and HESS2 regressor are listed in Table

9. There is little discrepancy in variable importance between the two BDTs.

Table 9: Relative Feature Importance in Regressor BDT training

Variable HESS-1 HESS-2

Aspect Ratio 0.12 0.12
IntensityN.N.min 0.11 0.12
Image Amplitude 0.11 0.11

QDC 0.10 0.11
rcore 0.10 0.10

IntensityN.N.max 0.10 0.10
MeanN.N 0.10 0.09

Energy 0.09 0.09
DCCount 0.09 0.09
Intensity 0.08 0.08

The features importances are, on the face of it, rather surprising. Ultimately, the true values

for energy and rcore are not the most important variables. We can conclude that the regressor

has been well taught to indirectly infer the cosmic ray charge, and account for this by correlating

values to the true core distance/energy. The Aspect Ratio is heavily dependent on distance to

core, but also on the charge. Thus, in combination with rcore, the charge can be reasonably

inferred. Similarly the Image Amplitude is relied upon to infer energy, and in conjunction with

the estimated energy, can indicate charge. It is encouraging to see that the regressor relies

more heavily on Image Amplitude and Aspect Ratio, because these two values are known with

a much smaller uncertainty than the core position/energy.

Repeating the comparison for the HESS1 regressor, we find for
σrgr
DCrgr

= 0.14, a significant

improvement over σDCcount. The plotted LPD is seen in Figure 13. Through use of a well-

defined law for the training values, we have eliminated the influence of σSTA on the training

process. The comparative performance is recorded in Table 10.

Instead of rejecting DC pixels which do not meet out DCcount and Psignal cuts, we can

separately measure their deviation from the LPD. In this way, we can include the information

from these DC pixels in later analysis, while accounting for the larger uncertainty in their LPD

measurements. For images which do pass only the multiplicity cuts, but not the Psignal or

DCcount cuts, we find that the regressor error is
σrejected
DCrgr

= 0.15. It would be interesting to

incorporate the information from these pixels into reconstruction, but doing so would remove

our ability to constrain the core. Further study could attempt to use the rejected pixels, though

the performance of the regressor on images without DC light would first need to be thoroughly

tested to account for the possibility that rejected pixels belong top images without DC light.

Because the BDT regressor functions as a Black Box, it is difficult to know how it is using the

information from camera images to calculate DCrgr. To ensure the validity of our Monte Carlo
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simulation, we will omit the rejected pixels as part of this analysis.

Table 10: Fractional error from fitted 56-TeV LPD distribution

HESS1 HESS2

σTrueDC 0.48 0.61
σDCcount 0.43 0.58
σrgr 0.14 0.16

σrejected 0.15 0.17

5 Monte Carlo Simulation

Having obtained a parameterisation for both the full and DC LPD, as well as the associated

error in the case of a HESS-type array, the Charge reconstruction Technique can be applied

to a simpified Monte Carlo simulation of the HESS array, developed as part of this analysis.

Conducting a Monte Carlo simulation using the Gaussian-smeared LPD, we can measure the

effectiveness of the LPD-reconstruction technique. The simulated Cosmic Rays must be high-

multiplicity, and have a realistic distribution of energy and interaction height values.

5.1 Iron Flux and Energy

Iron nucleii, like all Cosmic Rays, follow a well-defined power law where φ(E) = dN(E)
dt =

φ0(
E
TeV )−γ for some constant γ [6]. Using the SIBYLL model for Cosmic Ray Simulation, we

assume that γ = 2.76±0.11 and φ0 = 0.029±0.01m−2s−1sr−1TeV −1 [6]. Considering the same

Energy Range of 35-135 TeV, we can calculate the integrated Iron Flux.

F (35− 135TeV ) =

∫ 135

35
φ0(

E

TeV
)−γdE =

φ0
1.76

[35−1.76 − 135−1.76] = 2.86× 10−5m−2s−1sr−1

Within CORSIKA, a square simulation of 300 x 300m was simulated. We can consider an

identical 90000m2 target region for core position simulation. The HESS telescope additionally

has a solid and field of view of 5 degrees (0.006 steradians),meaning an expected telescope array

Iron Flux of F (35 − 135TeV ) = 0.0154s−1. On the basis of efficiency calculations in DC pixel

identification, it is clear that 2.3% of Iron Ray events will produce high-multiplicity DC pixels

accepted by the BDT. Thus, we will ultimately obtain an hourly flux of F (35 − 135TeV ) =

3.40× 10−4s−1 = 1.22h−1 high-multiplicity Iron events.

The full 5-telescope HESS array has been in operation since 2012 [10], and has thus had time

to collect several years of data. Due to the requirement of night operation under favourable

weather conditions, the HESS phase 2 experiment has collected approximately 5000 hours of

data. On the basis of our high-multiplicity flux rate, we can assume that a rough expected

event count would be roughly 6100 high-multiplicity iron events. The Monte Carlo simulations

will be run with approximately this number of events.

To accurately model the Cosmic Rays, the Energy Power Law must be simulated. To

generate the random Energy value En(R) following the power law, a uniformly distributed
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random number R is generated. The value of R represents a random fraction of the total

simulated flux F (R) = R× F (35− 135TeV ), and can thus range from 0-1. Having determined

the Integrated Flux corresponding to the random number, the Energy corresponding to this

flux can be calculated. The energy E is defined as the lower bound of the integral which would

produce the chosen integrated flux F. R can also be interpreted fraction of events that will have

a larger energy than the simulated cosmic ray does. Thus R=0 corresponds to an Energy of

135TeV yielding no Integrated Flux, while R=1 would correspond to an Energy of 35TeV and

the full Integrated Flux. The simulated Cosmic Rays will therefore obey a realistic power law,

with high-energy events being suppressed.

F (R) =

∫ 135

En(R)
φ0E

−2.76dE =
φ0

1.76
[En(R)−1.76 − 135−1.76] = R× F (35− 135TeV )

=⇒ En(R) = (
1.76×R× F (35− 135TeV )

φ0
+ 135−1.76)

−1
1.76

5.2 First Interaction Height

Cosmic Rays survival in from the top of the atmosphere follows an exponential decay with the

number of ’interaction lengths’ passed. The mean free path ` of a Cosmic Ray is a function of

atmospheric cross section and number density, which are themselves functions of height, so that

`(h) = 1
σ(h)n(h) . It is instead easier to consider a new variable x, which we name the ‘Interaction

Distance’, so that the survival probability of a cosmic ray follows a simple exponential decay

with the interaction distance passed. We thus define one Interaction Length, x0 such that a

cosmic ray traveling through one interaction length will have a non-interaction probability of 1
e ,

and in general Psurvival ∝ e
−x
x0 The geometric distance corresponding to one interaction length

will vary as a function of height.

The Interaction Length is inversely proportional to the interaction cross section, which is

itself proportional to local atmospheric number density, so that x0 ∝ 1
n(h) . Thus, because

the number density of the atmosphere increases with decreasing height, the local interaction

length will be geometrically shortened as the height of the cosmic ray decreases. If we consider

the Integrated Interaction Distance as the total number of interaction lengths passed by a

Cosmic Ray from the top of the atmosphere to a given height h, we see in Figure 14 that the

total integrated interaction distance increases exponentially with increasing height. We use the

standard HESS-based data tables also found in the CORSIKA software, containing information

regarding the integrated interaction distance and refractive index over a range of heights. As

a function of x, the corresponding local interaction rate Γinteract(x) will be a product of the

survival probability and the probability of interacting Pinteract(x) = −dPsurvival(x)
dx .

Γinteract(x) = Pinteract ×Nsurvived = −dPsurvival(x)

dx
× (N × Psurvival)

The fraction of surviving and interacting cosmic rays are shown in Figure 14, alongside the

resultant distribution of interactions binned by height h rather than interaction length x. The

height of each bin can be considered an average local value for Γinteract(h), and it is clear that
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the function Γinteract(h) peaks at a height of around 40km. This is thus the height region where

most of our cosmic rays will interact with the atmosphere.

To simulate the First Interaction Height, we assign a uniform random number R to each

event, corresponding to the Psurvival at which the cosmic ray will interact. R can be interpreted

fraction of events that will have interacted before the simulated cosmic ray does. It ranges from

R=0 for interaction at the top of the Atmosphere to R=1 for an event reaching the ground.

Having determined the fraction of events, we assume the survival probability is normalised. As

with all exponential distributions, we see that the expectation value is equal to one Interaction

Length.

Psurvival(x) = ke
−x
x0 =⇒

∫ ∞
0

Psurvival(x)dx = kx0[e
0 − e−∞] = 1 =⇒ k =

1

x0

Phalf (x) =

∫ xmedian

0
ke

−x
x0 dx = [1− e

−xmedian
x0 ] =

1

2
=⇒ xmedian = x0 ln(2)

< x >=

∫ ∞
0

Psurvival(x)dx = x0 =
xmedian
ln(2)

Thus, we can simply calculate x0 as the expectation value of interaction length. This

parameter is free-floating, and can only be determined through experimental study of Cosmic

Rays. Experimental results indicate an approximate cross section of σFe−air = 2000mb and a

corresponding thus x0 ≈ 12gcm−2 [11].

As with energy, we wish to simulate a realistic spectrum for the first interaction heights.

We must thus convert the uniform random number R to an interaction distance X. Using the

standard atmospheric tables, the corresponding height value can be found using exponential

interpolation. The standard atmospheric data is included in the appendix.

R =

∫ X

0
ke

−x
x0 dx = [1− e

−X
x0 ] =⇒ X = −x0 ln(1−R)

Interpolating the value of the height neglects the fact that some cosmic rays which would not

interact with the atmosphere before reaching the ground. The integrated interaction lengths

are equal to about 850 at an altitude comparable to the HESS site. There is thus a probability

of reaching the ground equal to P = exp(−85012 ) ≈ 1.73× 10−31. It is thus reasonable to ignore

this tiny fraction of events, and instead assume that every cosmic ray will interact at some point

in the atmosphere.

As cited by the HESS study, a typical first interaction height is roughly 30km for a Cherenkov-

Emitting event [6]. With the assumed value of x0, a simulation was conducted to determine

the expected interaction heights for Cosmic Rays. It is found that the mean first interaction

height of 36.9km and a median first interaction height of 35.2km for all cosmic rays. How-

ever, when Cherenkov-Emitting events are considered, we have both a median and mean first

interaction height of 30.3km, which clearly agrees with our expectations. Considering solely

high-multiplicity events, we find that these have a mean height of h ≈ 23± 5 km, as shown in

Figure 15.
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Figure 14: The integrated interaction lengths increases as height decreases. Thus the decay
probability follows a exponentially increasing distribution. The mean first interaction height
for all events is roughly 40km above sea level.
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Figure 15: The mean first interaction height for all Cherenkov Events is 40km. Events in blue
met the multiplicity threshold, with DC light in four telescopes. The mean first interaction
height for all Cherenkov events is 30km, while for high-multiplicity events in the HESS array it
is 23km.
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Another parameter that could be exponetially the optical depth to the surface, τ . The

Cherenkov Light, mostly emitted in the visible blue part of the EM spectrum, experiences

relatively little atmospheric absorption. The major of Rayleigh scattering-based atmospheric

absorption occurs in the lower part of the troposphere, and thus the atmospheric absorption

is almost independent of emission up to first interaction height. For a given emitted intensity

I0 we find that the corresponding I received on the ground decays exponentially with optical

depth, so that I
I0

= e−τ with τ =
∫ l
0 ds. However, the CORSIKA parameterisation has already

accounted for any influence of atmospheric absorption. It is likely that this, in part, contributed

to the value of σDCrgr.

5.3 Full-Shower event reconstruction

The full shower image amplitude seen in a telescope depends on the core position and the core

energy. We have determined a very clear parameterisation of this LPD, along with the expected

LPD fractional deviation of σI
I = 0.15. The received full shower amplitude is simulated under

the assumption of a Gaussian distribution around the expected value. We can thus reconstruct

the core position and energy using a Log Likelihood minimisation. Once a Cosmic Ray has

reached saturation, the Cherenkov Emission is effectively independent of its energy, barring

determination of the first interaction height. Consequently, the energy value is solely determined

by the full-shower amplitudes.

Having observed the full shower in n telescopes out of five, we consider each of the to-

tal photoelectron counts Ni,received. We aim to determine the expectation value of the LPD,

µ(x, y, Energy) , which led to the measurement Ni,received. For a given expectation value,

we know the corresponding probability of observing Ni,received will be the standard Gaussian

probability, with a sigma of σ = 0.15× µ.

Pi(Ni,Received | X,Y,Energy) =
1√

2σ2π
exp(−

(Ni,Received − µ)2

2σ2
)

To reconstruct the event parameters, we must minimise the probability of a given set of obser-

vations. We know that the probability of obtaining a set Ni,received will simply be the product

of the probability of each individual measurement, P(x, y, Energy) =
∏n
i=1 Pi(x, y, Energy).

For convenience we minimise the negative log likelihood instead, in which case we find that we

can sum over the contribution of each telescope. We then minimise the function by varying the

core position and energy, to find the most likely values for those parameters.

− ln(L) = −
n∑
i=1

ln(Pi) =

n∑
i=1

[
1

2
ln(2π) + ln(σ) +

(Ni,Received − µ)2

2σ2
]

The minimsation is done with the iMinuit python package, which calls the MINUIT algo-

rithm to seek a minima in a multi-dimensional parameter space [12]. Due to the discontinuous

nature of the likelihood function in the case of non-observation of an air shower, it is sometimes

the case that the MINUIT algorithm will find a local rather than global minima. To mitigate

this problem, we can start the minimisation on points in a lattice of starting values within the

parameter space. In each case, we would find a local minimum and an assosiated likelihood.
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We can then select the local minimum with the smallest associated likelihood as the global

minimum for the entire parameter space.

Using basic Hillas reconstruction techniques we can find a rough estimate of the core position.

For each telescope, we will obtain an expected direction to shower core, although it will be

heavily Gaussian-smeared from the true direction. However, combining these values can restrict

us to an expected target region. We consider a grid of spacing 5m in the xy plane, and with

each telescope, consider the reconstructed direction to shower core. Allowing a certain angular

deviation will give us a target region containing certain likely grid points. We progressively

increase the angular deviation until we have found the twenty most likely core position points. It

is important to note that these core positions are simply starting points for a minimisation. The

minimisation itself is allowed to float freely anywhere in the simulated target grid of 300×300 =

90000m2.

In addition, with reference to the energy power law, we consider 50 starting energy values.

We again use the energy range 35-135 TeV, and as with the initial simulation of the core energy,

we convert probabilities to energys. In this case, the probability range 0-1 is split into 50 evenly-

spaced values, and each of these is converted into a corresponding energy coordinate. Thus most

of the energy values are found at the lower end of the spectrum, because this is also where the

true values for most events will be found.

In combination, we consequently have a total of 1000 minimisations. Having run the minimi-

sation algorithm, we thus acheive a full-shower LPD reconstruction, and obtain a measurement

of the core energy and starting position. The resulting fraction error in energy distribution is

shown below in Figure 16. Under the assumption of a gaussian distribution, we can calculate

the mean fractional deviation as half of the distance between the 16th and 84th centiles of data.

We sort each fractional deviation, and expect that 68% of events will lie between these values.

Using this method, it is clear that the energy reconstruction is fairly good, with a fractional

standard deviation of roughly 0.10 when both four and five telescope events are considered. We

find that the position is also reconstructed, with an accuracy of . Having now reconstructed the

value of the energy with reasonable accuracy, we can make use of this value when attempting

to reconstruct the DC LPD.

A graph showing the difference between the distance from telescope to true core position, and

the distance from telescope to this reconstructed core position. Using the same 68% method,

the standard deviation from the true core distance is 10m for 5 telescope events, and 16m for

four telescope events. A better estimate for the core position will take into account the DC

LPD as well as the full LPD.

It is interesting to note that, for both variables, 5-telescope events have a lower deviation

that 4-telescope events. This is despite the fact that the multiplicity refers solely to the number

of identified DC pixels. The number of triggered telescopes containing an air shower is almost

always five for these events, regardless of whether a DC pixel exists and can be identified. We

can partially explain this by considering events which are likely to have 5 DC pixels. In such

a case, the core is likely to be restricted to a central ring in the region between CT5 and the

outer telescopes. This relatively strong confinement reduces the potential for misreconstruction

of the core position, and this indirectly improves reconstruction of the other variables.
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Figure 16: The fraction deviation from true energy is shown above. For events with five-
telescope multiplicity, the fractional error is 0.06 but for four-telescope multiplicity, it is 0.12.
The expected poissonian error bars are also shown.
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Figure 17: The distance from true core to the core reconstructed with the full-LPD is shown
above. For 4-tel events the standard deviation from true core distance is 16.4m while for 5-tel
events, it is 9.7m.
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5.4 Log Likelihood Minimisation

Having estimated the rough core position and energy, we would at this point use our regressor

to determine the values of candidateDCcount, based on the BDT-identified DC pixel and image

parameters. Having done so, we know that these values would follow the regressor LPD. For

the Monte-Carlo simulation, this step is bypassed, and the regressor LPD is instead directly

simulated with a standard Gaussian smearing. Having quantified the expected deviation from

the LPD under these conditions, this is a reasonable simplification that massively reduces the

computing requirements for event simulation. This in turn enables us to consider a greatly

expanded dataset for reconstruction attempts.

In order to fully reconstruct the events, we need to find the x/y core position, the Energy per

Nucleon, the first interaction height and the charge. We again consider the amount of DC light

that each telescope receives to be Gaussian, with an expectation of µ(X,Y, Z, height, Epn) and

a standard deviation of σ(µ). Ultimately the energy dependence of the LPD is almost negligible

over the energy range, because variable rmax is only weakly dependent on the energy. It thus

makes little sense to attempt to reconstruct the energy a second time, when we would expect no

discernible improvement over the reconstruction solely based on the Full Shower LPD that was

performed before. We thus fix the cosmic ray energy as that found before, and instead consider

a four-dimensional minimisation in Charge, x and y core position, and first interaction height.

We then minimise the Log Likelihood function, where the total log likelihood for each tele-

scope is equal to a sum of the full-shower LPD log likelihood and the DC LPD log likelihood.

We are thus minimising a Likelihood function with nine or ten measurements from two broadly

independent distributions. We consequently expect an improvement in the position reconstruc-

tion, as well as a measurement of the charge and the first interaction height.

As before, we find that the discontinuous LPD leads to a frequent identification of local

rather than global minima. To overcome this problem, we can iterate over a series of starting

values for the parameters, with the aim of scanning the true minimum among the many minima

found. In addition to the grid of likely positions identified for the Full-Shower LPD minimisation,

we can can scan the integer Z values over the range 20 ≤ Z ≤ 32. It should be emphasised

that the charge Z is treated as a free-floating parameter during the minimisation, and is able to

vary freely within the range 16-36. Similarly, three first interaction heights in the range 20-30

km are scanned, but the value is able to vary freely in the range 15-65 km. It is purely due

to computer resource restraints that ‘likely coordinates’ in the parameter space are scanned

as a starting point for a minimisation, rather than a uniformly distributed scan. Despite the

simplifications, each minimisation process will still undergo 12× 20× 3 = 720 iterations before

a final reconstruction is complete.

5.5 Variable Resolution

If we compare the deviation from true core distance to each telescope, we can quantify the

improvcement in core position reconstruction from minimisation based solely on the full-shower

LPD. This is shown in Figure 18, and is directly comparable with the preliminary results in

Figure 17. As expected, the core distance resolution is reduced to 13.5m and 6.1m, which is a

clear improvement over the previous measurements of core position.
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Figure 18: The distance from true core to the core reconstructed with both the full shower
LPD and the DC LPD is shown above. For 4-tel events the standard deviation from true core
distance is 13.5m, while for 5-tel events, it is a much smaller 6.1m. In both cases, there is clear
improvement over the full-shower-only reconstruction in Figure 17.
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Figure 19: The distance from true core position to the reconstructed core position is shown
above. For 4-tel events, the standard deviation from true position is 17.0m, while for 5-tel
events, it is just 9.2m.

As an alternative metric for assessing reconstruction accuracy, we can calculate the absolute

distance from the reconstructed core to the true core. The results of a binning of this distribution

are shown in Figure 19. Because we consider absolute distance, this value can never be negative.

Thus, we calculate a one-sided distribution standard deviation, and consider the value of an

event in the 68th centile to be equal to the standard deviation. It is found that, for both four

and five telescope events, the core reconstruction is approximately σcore = 9.1m and σcore17.0m

respectively. Considered together, we conclude that most high-multiplicity reconstructed core

positions thus lie less than 15m from the true position. This is reasonably good, especially in

comparison to the Hillas Reconstruction, where a core position resolution of σcore ≈ 20m is

more typical.

In contrast the fractional height standard deviation is of the order of 0.35. This is fairly

bad but not at all unexpected, because the regressor LPD was designed to be independent of

height. It is only the termination of the LPD that is height dependent, and thus it is both

hard to measure but also broadly unimportant. The reconstructed height has a tendency to lie

close to the starting values for height in the reconstruction process, namely 20, 25 and 30km.

As seen in Figure 2, the value for rmax varies relatively little between these energies, provided

that emission is saturated. On the basis of Energy cuts to remove protons, we are restricting
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Figure 20: The reconstructed charge is shown. For 4-tel events, the median charge is 26.0 with
a standard deviation of 2.1, while for 5-tel events, the median charge is 26.0 with a standard
deviation of 0.95.

ourselves to Energies of roughly 35TeV or more. As seen in Figures 3 and 2, this is clearly

sufficient for saturated emission. In fact, the extremely poor height resolution can be taken

as a mark of success in that our event reconstruction is now almost completely independent of

height, and therefore can’t be used to reconstruct the height.

Having taken into account our various variable uncertainties, we can also consider our most

important variable. In Figure 20 the reconstructed charge number is binned in integers, illus-

trating the element that each reconstructed event would be assigned to. As we would hope,

there is a very clear peak centered on Z=26, and the median charge value lies very close to this

value. The distributions are broadly symmetric, and have a charge resolution of σZ = 1.1 and

σZ = 2.2 for five and four telescope events respectively. Unsurprisingly, the charge resolution is

better for five-telescope events, but both cases represent a significant improvement over the ex-

isting charge resolution obtained through Hillas analysis. With the reasonably high event rate,

we could certainly expect to see such a peak in the existing HESS data, and the uncertainty

may be small enough to enable spectroscopic analysis. Obtaining such a peak is a vindication

of the LPD method, and demonstrates its superior performance for event reconstruction. How-

ever, the value of σZ for 4-telescope events is still large. It is also clear in Figure 20 that the

distribution is somewhat truncated by the imposed minimisation reconstruction range of 16-36.
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5.6 Boosted Decision Trees

There is one additional possibility for improved event reconstruction. We recall that, by virtue

of being a high multiplicity event, we will already be restricting ourselves to a fairly limited

core position and energy range. We can train a BDT to distinguish between events that are

likely to be well constructed, and those that are likely to be poorly constructed.

Once an event has been reconstructed, we can define the expected multiplicity as the number

of telescopes we would expect to see DC light in, given the reconstructed values for Energy per

Nucleon, charge and core position. Using this value, alongside the core position coordinates

and the energy, we train a BDT for each telescope multiplicity. Using a second set of Monte

carlo data, simulated under the same conditions, we train both a 4-tel and a 5-tel BDT. The

relative importance of variables is shown in table 11.

Table 11: Feature Importances for the reconstruction BDTs, ordered by 4-tel importance

Variable 4-tel 5-tel

Energy per Nucleon 0.29 0.30
Core y Position 0.27 0.31
Core x Position 0.26 0.31

Expected Multiplicity 0.19 0.07

It is interesting to note that, although the energy and core position always have similar

importance, the expected multiplicity is far more important for the 4-tel BDT. This implies

that many poorly reconstructed events have core positions that would lead to an altered multi-

plicity. If a telescope is not triggered, it is currently ignored for the purpose of reconstruction.

Consequently events can be reconstructed with core positions that we know to be false. We

apply each BDT to the Monte Carlo data with matching multiplicity, to identify events that

are likely to be reconstructed. The BDT score distribution is shown in Figure 21.

Having obtained a BDT score variables P4tel and P5tel, we can then optimise cuts on this

variable. The two BDTs will be optimised independently. Our aim is to reduce the value of

σZ to provide a narrower reconstructed peak. This should enable more effective spectroscopic

analysis. At the same time, we wish to maintain as high a pass rate as possible, to reduce

the expected random Poissonian Error in the dataset. We know that the Poissonian Error

of a distribution scales with 1√
N

. Ultimately we expect to obtain a spectrum of overlapping

Gaussians corresponding to each element, and fit for the relative height of each Gaussian. To

balance the competing priorities of large N and small σZ which will enable the Gaussian peaks

to be resolved, we can define a new scaled variable σ̃Z = σZ√
(f)

. Here, instead of N, we are scaling

with the passing fraction of events f =
Npassing

Ntotal
. The quantity σ̃Z is then found for a range of

BDT cut values, and the minimum found. The values of σZ and σ̃Z are shown in Figure 22.

Ultimately, a cut of P4tel > 0.15 and P5tel > 0.22 was chosen, corresponding to σZ = 0.88 and

σZ = 1.04 respectively. The respective passing fraction was 0.92 and 0.53. The improvement for

5 telescope events is minor, but for 4 telescope events there is a significant reduction in charge

resolution.

We can plot the distribution of reconstructed core positions, with the BDT score as a color
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Figure 21: The BDT score distribution is shown for the Monte Carlo test data. Events are
colour-coded by how well the Charge number was reconstructed. We see that the majority of
bad red events have a lower BDT score in the 4-tel graph. In each graph, the think black line
indicates the eventual cut made to the data.
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Figure 22: The BDT score distribution is shown for the Monte Carlo test data. Events are
colour-coded by how well the Charge number was reconstructed. We see that the majority of
bad red events have a lower BDT score in the 4-tel graph. In each graph, the think black line
indicates the eventual cut made to the data.
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scale. We see that a clear pattern emerges, with distinct differences between 4-tel and 5-tel

events. For 4-tel events, the core positions are widely distributed in the simulated region.

However, there are many cores clustered around each of the 5 telescopes. It is important to

recall that the BDT is never explicitly told about the position or number of telescopes, though

the distinct features at each telescope tell us that their existence has clearly been inferred by the

BDT. This suggests that the BDT is functioning as we would hope, and has learned indirectly

where the telescopes lie.

This makes sense, as cores close to a telescope are likely to produce negligible DC light in

that telescope. However, once the P4tel cut is applied, the majority of events lying outside the

square of small telescopes are removed. Also, interestingly, most events lying near one of the

smaller telescopes are removed, giving each telescope a noticeable halo containing few or no

events. This suggests that, if an event lies close to one telescope, the distance to the opposite

diagonal telescope is likely to be too large to produce a DC signal. Thus, we would instead

expect a 3-tel event. We know that the first interaction height is reconstructed extremely poorly,

and thus the exact rmax values for these LPDs is uncertain. It is likely that, given this, the

height is being misreconstructed to allow the LPD to extend fare enough to trigger the most

distant telescope.

However, there is a region of high P4tel points lying directly beyond the halo, in the inner

region. Events in this location are likely to be too dim to trigger the nearest telescope, while

still being close enough to trigger the remaining telescope. This region also encroaches partially

on the four telescope halos that would otherwise be completely circular. We are left with a

clear square region of high-score events lying within the telescope square. There is then a less

distinct halo surrounding the central CT5 telescope. This halo represents events that would be

distant enough from the center to trigger the CT5, but central enough to also trigger the outer

4 telescopes. within this halo, there is a dense region of reconstructed events lying very close

to the CT5 telescope, where they are close enough to not trigger it but are still able to trigger

the outer 4 telescopes.

The distribution of 5-tel events is much easier to explain. As each telescope must be triggered

there is a clear halo surrounding each telescope. Certain events are reconstructed with a higher

radius from the center, and these are mostly removed by the P5tel cuts. We are left with a

ring surrounding CT5 of high scoring events. The relatively loose cut is extremely effective

at reducing almost outlying events that are far from the centre, while leaving almost all other

events. Future reconstruction techniques could aim to make use of this information by restricting

the core position to these regions of expected high-multiplicity. However, this was not done as

part of this analysis.

We can assess the impact of the P4tel and P5tel cuts on the distribution of reconstructed

Energy. We would expect that the true energy distribution would begin at around 10-15 TeV,

when Cherenkov Emission becomes possible. The number of events would increase with energy

up to a maximum around 25 TeV when Emission becomes saturated, and would then decline

in accordance with the E−2.7 flux rate. The reconstructed Energy distribution does, as expect,

follow this pattern. This suggests that our method for Energy reconstruction is reasonable,

and this is further confirmation of the reasonably precise energy resolution shown in Figure
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Figure 23: A geometric representation the reconstructed events is shown. Each coordinate
corresponding to a reconstructed position in metres. The 5 HESS telescopes are represented by
black rings. Above we see all events, while below we see only events passing their respective
BDT cuts. In the left column we see the 4-telescope events, while in the right column, we see
5-telescope events.
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16. The Energy distribution is shown in Figure 24, alongside the post-cuts distribution. The

full simulated distribution of φ(E) ∝ E−2.7 is indicated alongside the reconstructed distribu-

tions. There is already a noticeable similarity between the Simulated and Reconstructed Energy

distributions, albeit with a broadening due to the Energy resolution of roughly 10%.

As might be expected, the loose P5tel cuts produce little noticeable difference to the distri-

bution. However, there is a clear curtailing of the lower Energy events after the P4tel cut has

been applied. This is as might be expected, because events that are not saturated in Energy are

unlikely to be reconstructed well. Ultimately, the post cut distributions of 4-tel events appears

similar to the 5-tel distribution, albeit with a greater overall frequency. Both are lie closer to

the simulated distribution once cuts have been applied. In contrast, the pre-cuts 4-tel events

had a noticeable broader distribution extending further into the very low and very high energy

regimes even when compared to the 5-tel rather than simulated distribution. The results broadly

vindicate our decision to apply an Energy Cut on reconstructed events that was implemented

to remove protons. Were the lower Energy Iron events to have been included in our simulations,

we would have needed to remove them through the BDT method because they are unlikely to

be reconstructed well. Having applied the BDT cuts, we see that the 5-tel distribution broadly

follows the simulated distribution with a relative height of 0.6%, while the 4-tel events follow

the simulated distribution with a relative height of 1.8%.

5.7 Final Variable resolution

After application of the BDT cut to the Monte Carlo datasets, the distributions in Energy,

Core Position and Charge are repeated. Unsurprisingly, the loose cuts for P5tel mean that 5-tel

performance is only slightly improved, while the 4-tel performance is more significantly im-

proved. For 5-tel events, the core position reduces from σcore = 9.2m to σcore = 8.7m, while for

4-tel events, the improvement is a substantial reduction from σcore = 17.0m to σcore = 10.0m.

Ultimately our resultant core resolutions are broadly similar for both multiplicities, and rep-

resent a significant improvement over previous Hillas-reconstructed core positions. Considered

as a target region, we see that we have a roughly fourfold reduction in bounding area likely to

contain the core.

With regards to energy, the removal of many low-energy events by the 4-tel BDT leads to

a clear improvement in resolution. This is evident in Figure 26. The 5-tel resolution improves

slight from σE
E = 0.06 to σE

E = 0.05 and the 4-tel resolution improves more noticeably from
σE
E = 0.12 to σE

E = 0.06. We again see that the harsher P4tel cuts leads to a convergence of

4-tel and 5-tel resolution. The height resolution remains poor, but continues to not hinder the

charge reconstruction.

This trend continues for the charge resolution, where we see a sharp improvement for 4-tel

events. Whereas in Figure 20 the distribution is clearly partially truncated by the imposed

range of 16 < Z < 36, we see no such problem once P4tel cuts have been applied. Ultimately

the 5-tel resolution improves from σZ = 0.95 to σZ = 0.88, while the 4-tel resolution improves

from σZ = 2.11 to σZ = 1.05. In doing this, we have achieved our stated aim of obtaining a

charge reconstruction method capable of producing large datasets with a charge resolution of

roughly σZ ≈ 1. The LPD method is this shown to be sufficiently good to enable spectroscopic
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Figure 24: The reconstructed Energy distribution is shown. Above, all events are included.
Below, only those events passing the P4tel and P5tel cuts are included
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Figure 25: The distance from true core position to the reconstructed core position is shown
above. For 4-tel events, the standard deviation from true position is 10.0m, while for 5-tel
events, it is 8.7m.There is a clear improvement over the distribution in Figure 19.

analysis of Heavy Cosmic Rays.

6 Further Improvements

There are many potential avenues that would improve or expand upon the work conducted as

part of this analysis. The development of a new method of DC pixel identification is likely to

prove particularly useful, as it performs more accurately and vastly more efficiently that existing

methods of DC pixels.

6.1 Hillas Reconstruction

The LPD reconstruction method was developed to replace the current method of Hillas Re-

construction, owing to the latter’s poor position resolution. Rather counter-intuitively, despite

the demonstrated superiority of the LPD method, the result of this analysis may well be to

strengthen the use of Hillas Analysis. The exact process for Hillas Reconstruction relies on

deriving the Major and Minor axis of a shower image, and calculating pairwise intersection

points of the major axes between telescopes to find the shower direction. Due to the blurriness
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Figure 26: The fraction deviation from true energy is shown above. For events with five-
telescope multiplicity, the fractional error is 0.05 but for four-telescope multiplicity, it is 0.06.
The expected poissonian error bars are also shown. There is a clear improvement over the
distribution in Figure 16.
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Figure 27: The reconstructed charge for the cut dataset is shown, with a clear peak around the
true value of Z=26. There is a noticeable improvement over Figure 20, with a new resolution
of 1.1 and 0.9 for 4-tel and 5-tel events respectively.
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of the shower images, there is significant uncertainty in placing of the major axis. However,

we know that the major axis will pass through both the shower centre of gravity and the DC

light. The shower centre of gravity is much easier to determine despite image blurring, and thus

has a much lower uncertainty. Previously, difficulty in identifying DC pixels meant that this

centre of gravity was not particularly useful. However, through use of the BDT-identified DC

pixels, it should be possible to much more reliable place the major axis in a shower image. We

can thus expect that, with the BDT, Hillas reconstruction may have a significantly improved

core position resolution. Further analysis in this area will be conducted by other members of

our research group. In the reasonable assumption that this does produce much better position

resolution, we will have third independent method to determine the core position as well as the

two LPDs. We could then conduct a likelihood minimisation encompassing this new informa-

tion alongside the existing LPDs. We would expect our final core position resolution, and thus

charge resolution, to improve even further as a result of these extra measurements.

6.2 Actual Data

The obvious next step to take as part of this analysis would be to apply the reconstruction

Method to real HESS data. We would hope to obtain a distribution similar to that in Figure

27, to which we could fit Gaussians centered on each integer value of Charge. In this way, we

could calculate the relative abundance of the different Heavy Cosmic rays. Comparing the width

of these Gaussians would confirm whether or not our reconstruction method was optimistic in

our various assumptions for error. Additionally, on the basis of the calculated expectation rate

for Iron Events we could compare to see if this agrees with the data. An excessive experimental

count rate would likely indicate that additional sources of background, such as protons, are

passing the various cuts. To compensate for this, additional cuts would need to be designed

and applied, which would likely lead to reductions in expected Iron acceptance rate.

In the event that the experimental method proves successful, it should be possible to use

the exact position of the iron peak as a method of calibration for atmospheric absorption. An

underestimate of the CORSIKA absorption used in training would lead to an iron peak that

was shifted to a charge number lower than 26, due to a lower than unexpected photon count.

Similarly, the reverse would apply if the modelled atmospheric absorption was an overestimate.

As these is much associated uncertainty in the atmospheric properties, this would be a useful

measurement to perform.

6.3 High Speed Telescopes

By definition, a Cherenkov-Emitting Cosmic ray will be travelling faster than the light that it

emits. The EAS shower will thus arrive on the ground shortly before the DC light. There are

currently several ultra-high-speed Cherenkov telescopes capable of resolving the received light

into narrow time bands. It should thus be possible for the telescope to directly measure the

DC light in one image, and the EAS shower in another image. We can imagine the possible

impact that such a telescope array would have on the reconstruction process. Directly measur-

ing this light will provide a direct measurement of TrueDC for use in shower reconstruction.

Although we saw that the value of TrueDC has a relatively large associated error, it could be
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used in various ways. Firstly, it could be used as an additional measurement to give a third

LPD to be minimised. These extra TrueDC measurements could be included in any likelihood

minimisation. Secondly, we could use the observation or non-observation of DC light to more

reliably constrain the core position of DC light. At present, our reconstruction method can

have a BDT-identified DC pixel even though there may not actually be DC light in the image.

Thirdly, the TrueDC variable could be passed to the regressor that was trained on the full

shower images. It is possible that this information may correlate well to other variables, and

enable better regressor LPD reconstruction.

6.4 Optimised Telescope Array

The reconstruction process that was developed is generally applicable to all telescope arrays that

image Cherenkov Light. This includes the Cherenkov Telescope Array (CTA), a planned array

that is likely to have many more telescopes than HESS. As we have seen, the reconstruction

process only works well for high-multiplicity events, but these represent only a small fraction

of all HESS events. We can imagine how the expected Iron event rate might increase, were an

alternate telescope array used. As the design for CTA has not been agreed, we can imagine

what an optimum arrangement for CTA might be, for the purpose measure DC light using the

method described here. To this end, we can consider a 3x3 array of Cherenkov Telescopes,

which we want to use for identifying Cosmic Ray Elements accurately. We can vary the grid

spacing, and determine the effect on expected count rate. In Figure 28 we see the expected

distribution of event multiplicities for varying grid width. While the overall detected event

rate increases as grid width increases, we find that that the ‘High Multiplicity Count Rate’ of

events observed by 4 or more telescopes decreases with increasing grid separation. Competing

with this effect is the reliance of LPD reconstruction on sampling the entire lateral distribution.

Thus the reconstruction quality for a given multiplicity will likely decrease as Grid Width

decreases. Nonetheless, it appears that the optimum grid spacing will likely lie in the 20-50m

region to provide a reasonable count rate. This is likely to fully sample an LPD of typical radius

rmax ≈ 100, while clearly maintaining a reasonably high count rate. Further study of σZ in

this region is required to determine the optimum layout for event reconstruction, which is not

necessarily a grid. Additional study in this area would be required to confidently predict what

an optimum Cherenkov Array for Heavy Charge measurement might look like.

7 Conclusion

Preliminary results suggest that the LPD reconstruction technique will significantly improve

charge reconstruction, to a level sufficient for cosmic ray abundance studies. However, reliance

on high-multiplicity events means that although applicable to current experiments such as

HESS, a new optimised telescope array would be required for a statistical analysis. Such an

array may have a grid spacing of 20-50m, although further study is needed to determine the

ideal layout.

The stated aim of this study was the Reconstruction of Charge Number of Heavy Cosmic

Rays using Cherenkov Light. Broken down further, this analysis aimed to identify DC pixels in
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Figure 28: A simulation of 50 hours of run time for various grid spacing for a 3x3 telescope
array. Although raw count rate increases with increasing grid width, the ‘good count’ rate of
events observed by sufficient telescopes falls rapidly with increasing grid width
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camera Images, to make a measurement of the DC light, and to reconstruct the charge of the

Cosmic Ray with an error or roughly σZ = 1 or less. On all of these counts, it is fair to say

that the project was successful.

On the first count, the use of BDTs was overwhelmingly successful for identifying DC pixels.

On a single Image basis, the BDT method produced an eightfold increase in accepted pixels

with an accompanying decrease in the proportion of misidentified pixels. More importantly,

the BDTs produced a two-hundred-fold increase in the acceptance of high-multiplicity events

upon which this analysis depends. Combining the acceptance rates, we find that 2.3% of

all Iron Cosmic Rays with an Energy greater than 35 TeV will belong to a high-multiplicity

image set. This gives an expected high-multiplicity Iron event rate of 1.22h−1, rather than

the alternative rate of 6.1 × 10−3 h−1 = 1.02week−1 that we would achieve with traditional

QDC identification. Ultimately, any attempted to analyse experimental data will suffer from

vastly insufficient statistics unless the BDT method is applied for DC pixels. This technique

will have wide-ranging uses outside of this analysis, among these will hopefully be a significant

improvement in Hillas reconstruction.

The second goal was achieved through use of a second set of BDTs, in this case regressors, to

extract values for DCrgr from images using DC pixels. It was found that the actual quantity of

DC light TrueDC varied quite significantly with the first interaction height. The time required

to produce the five simulations seen in Figure 3 was approximately two minutes, and we might

thus expect a calculation involving a thoroughly simulated LPD to last 10-20 seconds. The

exact calculation time would be energy dependent. If we were to fully simulate the LPD for

each iteration of the LPD, in order to realistically simulate the interaction height dependence,

we can see how long we might expect a minimisation of several thousand iterations to take.

Each minimisation is itself only one of several hundred, making clear that such fully simulating

the LPD as part of a minimisation process is completely infeasible.

Our only viable alternative is to develop a technique for measuring TrueDC without fully

simulating the entire LPD. Fortunately, the BDT regressor was able to do exactly this. The

fractional standard deviation was reduced of the BDT was just
σrgr
DCrgr

= 0.14 for a sample

of mixed interaction heights, as opposed to σTrueDC
TrueDC

= 0.48 when the actual DC light was

measured. With 4 or 5 LPD measurements, this BDT regressor was capable of giving an

amplitude proportional to Z2 with sufficient precision to enable reconstruction. The regressor

was able to the necessary precision by correlating a number of image and pixel variables such

as the Image Amplitude and Aspect Ratio. The BDT must indirectly be inferring the charge

number, but by providing this information in the form of an LPD rather than a simple number,

we are able to reconstruct the charge using all available information. It would be interesting to

explore the possibility of a BDT that would directly calculate the charge number of a Cosmic

Ray based on a given Image, but this was not done as part of this analysis.

Our last goal was to reconstruct the charge number of Cosmic Rays. To be more specific,

the reconstructed charge number should have a reasonably good resolution, while still having a

reasonably high acceptance rate that means a spectroscopic analysis of heavy Cosmic Rays would

be possible. Through a combination of two well-defined LPDs, it was possible to reconstruct

events using a likelihood minimisation. This resulted in many high-multiplicity events, but the
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vast majority were 4-tel events with a charge resolution of σZ = 2.2. However, a third BDT

was again able to significantly improve these results. In particular, 4-tel events were very easy

to separate on the basis of their reconstructed energy and core position into groups of ‘Good’

and ‘Bad’ reconstructions. Using only those events which were deemed by the BDT to probably

be well reconstructed, we noticeably reduce the charge resolution. Ultimately we are left with

σZ = 1.05 and σZ = 0.87 for 4-tel and 5-tel events respectively. The resolutions, alongside

the pass rate of 0.54 and 0.96, should be good enough to allow measurement of Cosmic Ray

composition.

Having successfully reconstructed a relatively large and narrow Iron peak, it is safe to say

that this analysis was a clear proof of concept. It remains to be seen whether the technique

can be applied to real HESS data so effectively as the simulations suggest, but there is suffi-

cient evidence to be optimistic. At the very least, the use of BDTs have provided significant

improvements in the viability of LPD-based reconstruction.
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10 Appendix

10.1 Atmospheric Data Table for CORSIKA (Windhoek, Namibia)

Alt[km] rho[g/cm3] thick[g/cm2] n-1 T[K] p[mbar] pw/p

0 1.2 · 10−3 1,039.25 2.77 · 10−4 293.96 1,014 1.27 · 10−2

1.73 9.97 · 10−4 850.55 2.31 · 10−4 288.78 829.49 8.75 · 10−3

2 9.71 · 10−4 823.59 2.25 · 10−4 287.21 803.15 8.14 · 10−3

3 8.8 · 10−4 731.12 2.04 · 10−4 281.36 712.78 6.04 · 10−3

4 7.97 · 10−4 647.33 1.84 · 10−4 275.32 630.92 4.26 · 10−3

5 7.2 · 10−4 571.55 1.66 · 10−4 269.1 556.91 2.86 · 10−3

6 6.49 · 10−4 503.14 1.5 · 10−4 262.68 490.11 1.82 · 10−3

7 5.84 · 10−4 441.49 1.35 · 10−4 256.09 429.95 1.11 · 10−3

8 5.25 · 10−4 386.06 1.21 · 10−4 249.32 375.86 6.38 · 10−4

9 4.7 · 10−4 336.34 1.09 · 10−4 242.37 327.36 3.5 · 10−4

10 4.2 · 10−4 291.83 9.71 · 10−5 235.27 283.96 1.82 · 10−4

11 3.75 · 10−4 252.11 8.65 · 10−5 228.04 245.24 0
12 3.33 · 10−4 216.78 7.68 · 10−5 220.76 210.81 0
13 2.94 · 10−4 185.47 6.79 · 10−5 213.63 180.31 0
14 2.58 · 10−4 157.88 5.96 · 10−5 207.07 153.44 0
15 2.24 · 10−4 133.77 5.18 · 10−5 201.74 129.96 0
16 1.93 · 10−4 112.94 4.44 · 10−5 198.44 109.69 0
17 1.63 · 10−4 95.18 3.76 · 10−5 197.58 92.41 0
18 1.36 · 10−4 80.24 3.15 · 10−5 198.84 77.88 0
19 1.14 · 10−4 67.76 2.62 · 10−5 201.41 65.75 0
20 9.48 · 10−5 57.37 2.19 · 10−5 204.55 55.64 0
21 7.92 · 10−5 48.7 1.83 · 10−5 207.82 47.22 0
22 6.63 · 10−5 41.44 1.53 · 10−5 211.02 40.17 0
23 5.57 · 10−5 35.36 1.29 · 10−5 214.09 34.26 0
24 4.7 · 10−5 30.23 1.09 · 10−5 217.01 29.28 0
25 3.98 · 10−5 25.91 9.18 · 10−6 219.77 25.08 0

27.5 2.65 · 10−5 17.75 6.11 · 10−6 225.96 17.17 0
30 1.79 · 10−5 12.28 4.13 · 10−6 231.15 11.87 0

32.5 1.21 · 10−5 8.58 2.8 · 10−6 237.7 8.29 0
35 8.37 · 10−6 6.05 1.93 · 10−6 243.1 5.84 0

37.5 5.81 · 10−6 4.3 1.34 · 10−6 248.5 4.14 0
40 4.07 · 10−6 3.08 9.38 · 10−7 254 2.96 0

42.5 2.87 · 10−6 2.22 6.62 · 10−7 259.4 2.14 0
45 2.04 · 10−6 1.61 4.71 · 10−7 264.8 1.55 0

47.5 1.46 · 10−6 1.18 3.38 · 10−7 269.6 1.13 0
50 1.07 · 10−6 0.86 2.47 · 10−7 270.2 0.83 0
55 5.86 · 10−7 0.46 1.35 · 10−7 263.4 0.44 0
60 3.19 · 10−7 0.24 7.36 · 10−8 253.1 0.23 0
65 1.73 · 10−7 0.12 3.98 · 10−8 236 0.12 0
70 8.93 · 10−8 5.88 · 10−2 2.06 · 10−8 218.9 5.61 · 10−2 0
75 4.39 · 10−8 2.67 · 10−2 1.01 · 10−8 201.8 2.54 · 10−2 0
80 2.03 · 10−8 1.13 · 10−2 4.68 · 10−9 184.8 1.07 · 10−2 0
85 8.44 · 10−9 4.51 · 10−3 1.95 · 10−9 177.1 4.29 · 10−3 0
90 3.31 · 10−9 1.77 · 10−3 7.65 · 10−10 177 1.68 · 10−3 0
95 1.27 · 10−9 7.06 · 10−4 2.94 · 10−10 184.3 6.73 · 10−4 0
100 5.09 · 10−10 2.91 · 10−4 1.18 · 10−10 190.7 2.79 · 10−4 0
105 2.02 · 10−10 1.26 · 10−4 4.66 · 10−11 212 1.23 · 10−4 0
110 8.55 · 10−11 5.91 · 10−5 1.97 · 10−11 241.6 5.93 · 10−5 0
115 3.74 · 10−11 3.05 · 10−5 8.64 · 10−12 299.7 3.22 · 10−5 0
120 1.82 · 10−11 1.73 · 10−5 4.19 · 10−12 380 1.98 · 10−5 0
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